Syllabus for ANG5494 Text Analysis
Course instructors: and Amber Wutich and Melissa Beresford
Lectures by: Dr. Amber Wutich and Dr. Clarence Gravlee
Online Office Hours – TBA
Email: amber.wutich@asu.edu and melissa.beresford@asu.edu

Course description: This graduate seminar surveys methods of text analysis. The focus of the course is on developing skills that students can use to do systematic analysis of textual data, including written texts, photos, and audio or video data. The course will explore a range of inductive and deductive approaches and will cover analytic skills that cut across traditions, including theme identification, code definition, and construction of codebooks, and teamwork in text analysis. Advanced topics covered will include schema analysis, grounded theory, classical content analysis, content dictionaries, word-based analysis, and semantic network analysis.

Course objectives: Students taking this course will (1) develop a working familiarity with a wide range of methods used to analyze text data, (2) be able to select appropriate methods for a variety of research questions, and (3) acquire hands-on experience using analytic techniques, and (4) apply these skills to their own independent projects.

Readings: The primary text for this course is Bernard & Ryan’s Analyzing Qualitative Data: Systematic Approaches (2010). Additional readings will be posted on the course website.

Software:
MAXQDA, free 30-day trial available at http://www.maxqda.com/downloads/demo
UCINET, free 30-day trial available at http://www.analytictech.com/downloaduc6.htm

Grading policies: Each week, students will read, attend class, and participate in weekly discussions (25% of final grade). Students will also do methodological exercises and write responses 50% of final grade). These exercises will help students develop hands-on experience and a practical understanding of how methods work. In the last week of the course, students will apply their new skills to their own projects (25% of final grade). Assignments should be turned in on or before the due date, unless excused with university-approved documentation.

Grading Summary:
25% Preparation for and participation in discussions
50% Homework assignments
25% Final project

Preparation for and participation in discussions

For each lesson, plus introduction and final, students will be required to make two discussion posts: (1) an initial 200-word response to a discussion question related to the lesson (e.g., “What are the positives and negatives of using grounded theory for a dissertation research project?” and (2) a 50-word response to another student’s post. Students will be asked to draw on their own experiences and/or discuss their own projects in answering discussion questions. There will be 16 discussion posts; each will be worth 100 points (initial post=75 points; follow-up post=25 points).
Homework assignments

For each lesson, plus the introduction, students will be asked to do a hands-on exercise that will help develop their practical skills in analysis. Examples of these exercises include theme identification, metaphor analysis, and word frequency analysis. The instructors will provide practice datasets, codebooks, and other analytic tools as needed. There will be 15 exercise assignments; each will be worth 100 points.

Final project and presentation

In the final assignment, students write a paper drawing on the results of their research. Students may use data from their own research. If they do not have data, the instructors will help them design a secondary data analysis (e.g., of song lyrics, blogs and websites, or advertisements) related to their interests. Final projects must show mastery of one of the techniques taught in the class. Like a final exam, this assignment builds on knowledge acquired throughout the course. The assignment will be worth 100 points.

Academic Honesty: Unless it is specifically connected to assigned collaborative work, all work should be individual. Evidence of collusion (working with someone not connected to the class or assignment), plagiarism (use of someone else’s published or unpublished words or design without acknowledgment) or multiple submissions (submitting the same paper in different courses) will lead to the Department’s and the University’s procedures for dealing with academic dishonesty. All students are expected to honor their commitment to the university’s Honor Code (available online at http://www.registrar.ufl.edu/catalog/policies/students.html).

Disability Accommodations: If you are a disabled student in need of special arrangements for exams or homework, we will do all we can to help. Students requesting classroom accommodation must first register with the Disability Resource Center (http://www.dso.ufl.edu/drc/). The DRC will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation.

Course Schedule

Module 1: Introduction & Building Blocks

Introduction
Readings: Bernard and Ryan (2010), Ch. 1-2 (p. 1-51)
Exercise: Set up data sets, introduction to software

Lesson 1: Identifying themes
Readings: Bernard and Ryan (2010), Ch. 3 (p. 53-73); Bradley et al. (2007); Steger (2007)
Exercise: Identifying themes in illness descriptions

Lesson 2: Building & applying codebooks
Readings: Bernard and Ryan (2010), Ch. 4 (p. 75-105); MacQueen et al. (1998); Weston et al. (2001)
Exercise: Codebook definitions, intercoder reliability

Lesson 3: Describing themes
Readings: Sandelowski (1998); Keen and Todres (2007)
Exercise: Writing descriptions of themes

Lesson 4: Making comparisons
Readings: Bernard and Ryan (2010), Ch. 5 (p. 107-120) and Ch. 7 (p. 145-161)
Exercise: Make structured comparisons at group and individual levels

Lesson 5: Building and testing models
Readings: Bernard and Ryan (2010), Ch. 6 (p. 121-142); Miles and Huberman (1994)
Exercise: Build a model and test it using coded data

Module 2: Inductive code-based approaches

Lesson 1: Schema analysis
Readings: Bernard and Ryan (2010), Ch. 14 (p. 311-323); Quinn (2005)
Exercise: Metaphor analysis

Lesson 2: Grounded theory
Readings: Bernard and Ryan (2010), Ch. 12 (p. 265-286); Abrahamsson et al. (2002); Markovic (2006)
Exercise: In-vivo coding, line by line coding, and memoing

Module 3: Deductive code-based approaches

Lesson 1: Classical content analysis
Readings: Bernard and Ryan (2010), Ch. 13 (p. 287-310); Murray and Murray (1996)
Exercise: Define and test code reliability, test hypotheses

Lesson 2: Content dictionaries
Readings: Colby 1966, Rosenberg et al. 1990
Exercise: Make a content dictionary and use it to analyze texts

Module 4: Word-based analyses

Lesson 1: Word frequencies & stop lists
Readings: Bernard and Ryan (2010), Ch. 9 (p. 191-220)
Exercise: Create a stoplist and do a word frequency analysis

Lesson 2: Semantic network analysis
Readings: Quinlan and Quinlan (2010); Ignatow (2009)
Exercise: Export similarity matrices and do multidimensional scaling

Week 5: Applying the lessons to real data

Lesson 1: Step-by-step project design
Readings: Wutich and Gravlee (2010)
Exercise: Set up your own project

Lesson 2: Application to real project
Readings: Gravlee and Sweet (2008)
Exercise: Work on your final paper

Lesson 3: Application to real project
Readings: Wutich et al. (2010)
Exercise: Work on your final paper

Final assignment: Choose one methodological approach and apply it to analyze your own data

Required Reading

Primary Course Text

Additional Readings

